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Figure 1: Users design customized, flexible BandEI patches via (a) an interactive UI, rapidly fabricate them, and seamlessly
apply to various body parts (e.g., (b) ankle, (c) neck, and (d) wrist) for non-invasive electrical impedance sensing.

Abstract

Monitoring deep muscles and tissues is critical for rehabilitation,
training, and fine motor control. In this work, we propose BandEI,
a flexible, bandage-like wearable sensor for electrical impedance
sensing. BandEI utilizes woven conductive fabric as the core ma-
terial for its electrodes and leverages digital fabrication, including
laser cutting, to enable scalable and customizable fabrication. To
streamline the design process, we provide a user interface that
allows users to freely select the deployment location of BandEIL
The interface automatically generates fabrication-ready design files
that accommodate for the curvature and shape of the selected area.
We evaluate BandEI and validate its ability to detect signals from
actively engaged large muscles, such as the biceps and triceps. Ad-
ditionally, it can capture signals from deep or passively activated
muscles, like those in the hand, which are typically difficult to
detect with conventional surface electromyography (sSEMG). We
design and implement BandEI for muscles in the fingers, neck, and
ankle, demonstrating its capability for diverse applications, includ-
ing real-time gesture recognition, neck motion monitoring, and
gait tracking.
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1 INTRODUCTION

Humans rely on muscle activity for a vast range of physical tasks,
from delicate movements like writing and manipulating small ob-
jects to more substantial actions such as lifting, running, and jump-
ing. Understanding and measuring muscle activity is essential
across various fields, including biomechanics [29, 31], rehabilitation
[19, 35, 36], and human-computer interaction [17, 21, 37].

Various techniques have been developed to monitor muscle ac-
tivity in different muscle groups. Surface electromyography (SEMG)
measures electrical signals generated during active muscle contrac-
tions. It has been widely adopted to monitor large muscle group,
such as triceps and quadriceps, for rehabilitation [19], sports per-
formance optimization [29], and human-machine interaction[9, 10].
More recently, active sensing approaches, particularly electrical
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Table 1: Comparison of muscle sensing modalities in terms of invasiveness, ability to sense small muscle groups, detection of
tension/contraction/relaxation states, on-skin comfort, and space for related works.

Representative Study Modality | Non-Invasiveness | Small Muscle Sensing | Tension | Contraction | Relaxation | On-Skin Comfort
Kotov-Smolenskiy et al. [19] sEMG v X v v X v
Menkes and Pierce [23] iEMG X v v v X X
EIT Kit [37] EIT v X v v v v
Xu et al. [31] EIM v X X X v v
BandEI (Ours) EI sensing v v v v v v

impedance-based techniques like electrical impedance tomography
(EIT) and myography (EIM), have emerged as powerful alternatives.
By injecting small currents and measuring the electrical impedance
along the path, these techniques offer valuable insights into muscle
activation, tendon movement, and physiological states. Electrical
impedance sensing has demonstrated applications in muscle reha-
bilitation [35, 36], sports health care [31], and interactive systems
[37].

While there has been significant success in monitoring large
muscle groups, deep muscle groups remain difficult to assess due to
their deeper location, more complex structure, and smaller size. Yet,
these muscles are equally important, particularly for applications
that require fine motor control, including diagnosing neuromus-
cular disorders, monitoring rehabilitation progress, and detecting
micro gestures for interactive interfaces. Several studies have at-
tempted to measure deep muscle activity in the hand [17], foot [25],
or neck [20]. However, many studies infer deep muscle activity
indirectly by measuring signals from nearby larger muscle groups,
for example, detecting hand gestures through forearm muscle ac-
tivity [1, 4, 21, 28, 33, 34]. More direct monitoring of deep muscles
often relies on invasive methods, such as needle electromyography
[23]. Achieving accurate, real-time, and non-invasive sensing in
deep muscle groups requires active, flexible, and conformal sensing
interfaces that can effectively access and measure activity from
deep-seated structures.

In this paper, we propose BandEl, a flexible electrical impedance
sensing system that enables customized sensor designs for deep
muscles and tendons monitoring. By leveraging digital fabrication
techniques, we expand the applicability of electrical impedance sen-
sors to smaller, more complex anatomical regions. Our approach
focuses on improving electrode placement precision, electrical sta-
bility, and user comfort, allowing for more effective monitoring of
various body parts that were previously challenging for conven-
tional EMG and EIT systems. Moreover, our solution is comprised
of economical materials, facilitating straightforward prototyping
and reproducibility of the system at a low cost.

We evaluate BandEI through two experiments. First, we com-
pared our system with standard sSEMG in high-intensity and low-
intensity muscle contractions. The results indicate that BandEI not
only captures subtle movements of small muscle groups (such as
hands and neck) but also performs better than EMG in some low-
force scenarios. Second, we validate that by placing BandEI directly
on the hand and fingers we can detect subtle movements that are
more difficult to identify when sensed from the wrist. It highlights
the sensitivity, effectiveness, and versatility of BandEI. We showcase
the capability of BandEI in three applications, including gesture
recognition, neck posture tracking, and gait monitoring.

Our contributions are as follows:

o A bandage-like flexible electrical impedance sensing inter-
face for deep muscle and tendons monitoring.

e A interactive design toolkit for customizing sensing layouts.

o Alow-cost digital fabrication pipeline for creating customized
conformal electrode arrays.

e Evaluation of our system for muscle activity monitoring.

e Demonstration of applications in deep muscles monitoring
at ankle, neck, and fingers.

2 RELATED WORK

This work improves electrical impedance-based sensing for muscle
activity by detecting signals from deep muscle groups and designing
sensors that adapt to different body anatomies. To contextualize our
research, we examine prior work in two key areas: muscle activity
sensing in HCI, and digital design and fabrication for wearable
physiological interfaces.

2.1

Muscle activity sensing is vital in HCI, with common techniques
including Electromyography (EMG), Electrical Impedance Tomog-
raphy (EIT), and Electrical Impedance Myography (EIM) (Table 1).
EMG captures electrical signals from muscle activation, while EIT
and EIM detect conductivity changes due to muscle contractions
[6, 11]. These methods are widely used in rehabilitation [19, 35-37],
sports analytics [29, 31], exoskeleton control [9, 10], and gesture
recognition [1, 4, 21, 28, 33, 34].

In rehabilitation, SEMG and impedance-based sensors monitor
muscle recovery and assist with exoskeleton control [19, 35, 36].
Sports applications use these tools to analyze muscle activation and
health [29, 31]. For gesture recognition, both EMG and impedance-
based techniques track forearm muscle activity to support VR, smart
home, and mobile interfaces [1, 4, 21, 28, 33, 34].

However, sensing small or deep muscles remains difficult due to
challenges in electrode placement, signal interference, and sensor
size. While efforts exist to measure activity in fingers [17], feet [25],
and neck [20], most systems target larger muscles. Invasive EMG
(iEMGQG) is often needed for precise small-muscle measurements
[23]. To address these limitations, we introduce a customizable
fabrication pipeline for impedance-sensing electrodes tailored to
small muscles and complex anatomies.

Muscle Activity Sensing in HCI

2.2 Digital Design and Fabrication for
Interactive Interfaces

Fabrication technologies play a crucial role in Human-Computer
Interaction (HCI) by enabling novel interaction paradigms through



BandEl: A Flexible Electrical Impedance Sensing Bandage for Deep Muscles and Tendons

Data --

o 4 v‘“‘“_"‘l ”,—
Acquisition , .-
Module \

Exposed

N

N
N

Electrodes

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

o— Cover Layer

Traces

+. windows ——e

N
~
.

Adhesive

—_ .
Skin Skin Layer

Figure 2: BandEI Overview. (a) The electrical impedance sensing patch is applied to the neck and connected to an impedance
measurement circuit. (b) Exploded view of the BandEI three-layer structure: skin layer, conductive layer, and cover layer.

customized material properties and structures. Traditional fabrica-
tion methods have been continuously improved to enhance flexibil-
ity, scalability, and accessibility. Recent advancements in fabrication
techniques such as laser cutting [3, 7, 15, 16, 26], multi-layering
[7, 13, 18, 27], and conductive gel [8, 32] have allowed for more
interactive and adaptive user interfaces.

Laser cutting is widely used in HCI for rapid prototyping and cus-
tom circuit fabrication. Systems like LaserFactory [26] and LaCir 7]
automate circuit creation and simplify electronic prototyping for
non-experts. Laser cutting enables precise, accessible fabrication of
interactive electronics, particularly valuable for iterative design in
HCIL.

Multi-layering techniques enable flexible, interactive materials
beyond rigid electronics. Glauser et al. [13] use 3D-printed multi-
layered structures for deformation-based input, while IntelliTex [27]
embeds conductive traces in textiles to support gesture and touch
sensing. Multi-layering enhances the functionality, durability, and
responsiveness of interactive surfaces, supporting richer, more nat-
ural user interactions.

Conductive gels offer flexible, skin-friendly alternatives to rigid
electrodes. Xue et al. [32] demonstrate hydrogels for enhanced
physiological sensing, and recent work [8] introduces self-adhesive,
ink-printed electrodes that boost signal quality by 88% and reduce
stimulation current. Conductive gels improve user comfort and sig-
nal quality in wearable systems, making them ideal for continuous
or body-integrated sensing.

Building on these advances, we present a customizable Electri-
cal Impedance Sensing (EIS) fabrication pipeline that combines
laser cutting, multi-layering, and conductive materials. By unifying
these techniques, our approach supports adaptable, user-centric
fabrication of EIS interfaces for diverse HCI applications.

3 SYSTEM OVERVIEW

BandEI leverages electrical impedance sensing, an active sensing
technique that applies a small alternating current (AC) through
electrodes and measures the resulting voltage. This allows the sys-
tem to calculate impedance, which varies with tissue composition,
motion, and deformation, making it well-suited for detecting subtle
physiological and biomechanical changes.

BandEI consists of an interactive design pipeline, a flexible bandage-
like interface created through digital fabrication, and an integrated
readout circuit, which is built on the open-source EIT-kit [37],
which supports battery power and wireless communication via a
BLE module (Microchip RN4871).

3.1 Design Rationale

BandEI offers a flexible, low-cost, and customizable solution for
deep muscle monitoring.

Flexibility. Inspired by the design of a Band-Aid, BandEI is de-
signed as a flexible and conformal sensor patch with customized
shapes and electrode placements. This design enables sensing ac-
cess to deep muscles and tendons in body regions with complex
geometries. The conformal bandage-like structure can be tightly
wrapped around and adhere to a broad range of curved body parts
such as the fingers, wrists, and neck, enabling comfortable wear
and stable skin contact. Compared to conventional medical elec-
trodes, BandEI offers the advantage of miniaturization, allowing
multiple electrodes to be deployed in compact areas, such as on the
fingers. The new form factor of BandEI enables the deployment
of electrical impedance sensing in regions that were previously
difficult to access.

Cost Effectiveness. BandEI is designed to be cost-effective by us-
ing inexpensive materials and a streamlined digital fabrication pro-
cess via COy laser cutting. This affordability and minimal manual
labor requirements make it suitable for both reusable and dispos-
able use cases, depending on the application context. Most of the
material cost comes from silicone sheets and conductive fabric. A
finger-sized BandEI (Figure 11a) costs around $0.40, and a larger
neck-sized BandEI (Figure 2a) costs around $1.00.

Customization. BandEI also emphasizes customization, support-
ing diverse anatomical regions and sensing requirements. The num-
ber, shape, and layout of electrodes can be tailored to specific use
cases. Users can easily edit and preview BandEI designs through
an interactive design tool (Section 3.2). The generated design files,
combined with the rapid digital fabrication process (Section 3.3),
allow users to produce ready-to-use sensor patches quickly.
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Figure 3: Design pipeline overview. (a) The user begins by selecting a 3D mesh model in the platform. (b) Our plugin then
generates a preview of the personalized bandage design, (c) followed by the final layout for fabrication.

3.2 Interactive Design Pipeline

To support rapid prototyping and customization of a flexible elec-
trical impedance sensing system, we develop an interactive 3D
design interface (EI-Editor) (Figure 3) tailored for creating body-
conforming bandages with customizable electrode distributions.
Our tool enables users to define sensing regions directly on a 3D
human mesh model and automatically generates a corresponding
bandage-like geometry that ensures comfortable and tight contact
with the body, accurate electrode placement, and seamless integra-
tion into a multi-layer fabrication pipeline.

Body-Conforming Bandage Generation. Users begin by selecting
the desired sensing region on a 3D mesh model of the human body,
which can be either imported from a scan or selected from a pre-
existing library. EI-Editor analyzes the geometry of the selected
mesh area and generates a corresponding 2d layout that closely
conforms to the body surface. The system provides a real-time 3D
preview to ensure the bandage fits the anatomical contour and
aligns with user expectations.

Custom Electrode Placement. Within the editor, users can adjust
the number, size, and spacing of electrodes, which are parameters
that jointly influence sensing resolution, signal quality, and fabrica-
tion complexity. More electrodes and tighter spacing enable finer
spatial sensing but increase design and wiring demands. Larger
electrodes offer more stable signals but reduce resolution. The inter-
face dynamically updates the preview to reflect changes, enabling
real-time exploration of different sensing resolutions and layouts.
Once finalized, the system generates a visualization of the complete
multilayer bandage, including the conductive layer (electrode and
wire layout), skin-contacting layer, and protective cover layer.

Fabrication File Generation. Once the design is complete, EI-
Editor exports fabrication-ready files in the form of SVGs for each
layer. These files are compatible with commercial laser cutters, en-
abling straightforward physical fabrication. Electrode shapes can
be cut from conductive materials (e.g., silver-coated fabric), while
the full bandage can be assembled by stacking the cut layers as
shown in Figure 2b. This pipeline allows rapid iteration on bandage
designs with minimal manual effort.

3.3 Fabrication

BandEI consists of three layers: an adhesive layer that contacts the
skin, a middle layer containing conductive electrodes and connect-
ing traces, and an outer protective cover (Figure 2). The electrodes

(8 mm X 8 mm) and connecting traces (1 mm width) are made from
copper-nickel-plated woven conductive fabric (AMRADIELD). Both
the adhesive and cover layers are made of 0.4 mm thick medical-
grade silicone sheets (MEDLOT). The adhesive layer includes 5 mm
X 5 mm square openings to expose the electrodes for direct skin
contact.

We develop a simple, repeatable fabrication pipeline for the multi-
layer BandEI patches via laser cutting. The process includes five
steps (Figure 4): laser cutting the skin and cover layers, laser cutting
the conductive layer, soldering cable, assembling the layers, and
applying the conductive gel. All three layers are precisely shaped
using a CO; and fiber laser cutter (Figure 4a and b), with identical
alignment frames included in the design to ensure accurate reg-
istration during assembly. Connection cables are soldered to the
extended traces at the edge of the patch to establish reliable connec-
tivity with the data acquisition system (Figure 4c). Soldering before
assembly avoids exposing the silicone sheet to high temperatures,
preventing potential damage. After that, the conductive electrodes
and traces are transferred onto the adhesive layer, followed by
placement of the cover layer (Figure 4d). Slightly over-sized elec-
trode patches are used to tolerate minor misalignments and ensure
consistent skin contact. Finally, conductive adhesive gel (TENSIVE)
is then applied to the exposed electrodes. The gel fills the space
between the skin and conductive patches and gradually solidifies
to form a stable interface (Figure 4e).

4 RESULT

We evaluate the performance of the electrodes through impedance
measurements and validate the effectiveness of electrical impedance
sensing at the major muscles by using sSEMG data as our baseline.

4.1 Impedance Characterization

We perform impedance measurements across a broad frequency
range (100 Hz - 10 MHz) [14] to identify electrode materials and
sizes that ensure stable performance and low-impedance skin con-
tact.

Measurement Setup. As shown in Figure 5, we measure each
electrode’s impedance using a frequency response analysis (FRA)
approach. The measurement setup consists a TL082 operational
amplifier and a 1kQ feedback resistor. A 1V peak-to-peak sinusoidal
signal, sweeping from 100 Hz up to 10 MHz, is produced by an
oscilloscope’s function generator port, by using its built-in FRA
module. The gain and phase responses between the input and output
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Figure 4: Fabrication pipeline of BandEI The five-step process includes (a) laser cutting of skin and cover layer, (b) laser cutting
on electrodes and connecting traces, (c) soldering, (d) layer assembly, and (e) application of conductive adhesive gel to enhance

skin contact.

R1
1000 Ohm
+— Scope CH2 «fn GND
= Operational P 4
GND Amplifier Measuring
Vee Object
-~ Scope CH1 =Jn GND
l+ —>
T 1TmA
GND
Function Amplitude: 1V pk-pk

Generator Frequency: 100Hz-10MHz
GND

Figure 5: Circuit schematic for impedance characterization.

are obtained: Channel 1 (CH1) measures the input to the electrode,
while Channel 2 (CH2) measures the output across the electrode.
Using the measured gain and phase data, we calculate the complex
impedance across the full frequency range.

Electrode Material Comparison. We evaluate the electrical impedance
of different conductive materials, including commercial copper-
nickel-plated woven conductive fabric, knitted conductive fabric,
and copper tape (Figure 6a, 2-4), and compare it with a standard
medical-grade Ag/AgCl gelled electrode (3M 2560, Figure 6a, 1). Fig-
ure 6b shows the measured impedance value across the bottom of
the index finger for each material. The shaded regions indicate the
standard deviation from measurements on six different participants.

Ag/AgCl electrodes, which have long been the standard for med-
ical applications such as Electrocardiogram (ECG) and sEMG, serve
as our benchmark for alternative electrode materials comparison.
Both woven conductive fabric and knitted conductive fabric have
lower impedance than Ag/AgCl across the entire frequency range.
Notably, woven conductive fabric’s impedance is nearly identical
to that of Ag/AgCl in the low-to-mid frequency range, which is es-
pecially important for bio-impedance measurements. Although the
knitted conductive fabric has slightly better electrical performance,
its rough surface texture causes discomfort over long-time wear-
ing. We also test electrodes made of copper tape, which similarly
demonstrate low impedance. However, the rigidity of the copper
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Figure 6: Comparison on Electrode Materials. (a) Six elec-
trode types include Ag/AgCl, woven conductive fabric, knit-
ted conductive fabric, copper tape, dry-BandEl, and semi-
dry-BandEI The wet-BandEI with a thin layer of conductive
paste, shares the same appearance as (a.6) and is not shown.
(b) Impedance-frequency characterization of each electrode
type, showing their average impedance across a wide fre-
quency range. Shaded areas represent standard deviation
across multiple participants.

tape makes it not applicable for wearable applications. As a result,
we choose woven conductive fabric as our final electrode material.

Conductive Gel and Paste. We then create band-aid-like proto-
types by layering the selected woven conductive fabric as the middle
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Figure 7: Impedance-frequency response of (a) electrodes of
different sizes and (b) across time.

conductive layer. We further investigate the effect of conductive gel
and paste by measuring the impedance over three different designs:
dry-BandEI without conductive adhesive gel (TENSIVE) or conduc-
tive paste (TEN20), semi-dry-BandEI with conductive adhesive gel
but without conductive paste, wet-BandEI with both conductive
adhesive gel and conductive paste.

We find that the semi-dry-BandEI has slightly lower impedance
than the dry-BandEI across the low-to-mid frequency range, and
the wet-BandEI further reduces the impedance compared to the
semi-dry-BandEI (Figure 6b). We observe that the conductive adhe-
sive gel in the semi-dry-BandEI fills minor gaps caused by thickness
mismatches between the electrodes and the skin at the exposed
windows. It improves contact between the electrode and the skin.
In wet-BandE], the conductive paste further maintains surface mois-
ture and a higher ion concentration, resulting in a more conductive
skin—electrode interface. We use the wet-BandEI because of its
high sensing performance and ease of fabrication. In the paper, all
references to "BandEI" specifically refer to wet-BandEI electrodes
using conductive adhesive gel and conductive paste.

Electrode Size Comparison. To identify the optimal electrode size,
we fabricated electrodes in five different sizes (5 mm X 5 mm, 8 mm
X 8 mm, 10 mm X 10 mm, 15 mm X 15 mm, and 20 mm X 20 mm) us-
ing woven conductive fabric material. All electrodes were measured
under the same conditions, where we place a pair of electrodes with
a gap of 10 mm at the dorsal forearm. As shown in Figure 7a, smaller
electrode sizes consistently result in higher impedance, with an
approximately linear relationship observed in the low-to-mid fre-
quency range. This trend aligns with our expectations, where larger
contact areas provide lower impedance[14].
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Figure 8: BandEI Prototypes. (a) The design and (b) fabricated
prototypes of BandEI for three anatomical locations, includ-
ing the ankle, neck, and knee.

Despite the lower impedance of larger electrodes, our target
application requires compact, wearable electrodes that can be placed
on small or curved body regions such as fingers. Therefore, we
select the smallest tested size, 5 mm X 5 mm, as the final electrode
dimension for our band-aid-like design.

Measurement across Time. To evaluate the stability of BandEI,
we took repeated impedance measurements over a long period of
time. Stability is a key characteristic of wearable electrodes, as they
are often used and removed multiple times in real scenarios. In
this experiment, electrical impedance was measured at six different
time points. The first five measurements are taken at hours 0, 2,
4, 6, and 8 of the initial measurement, and the final measurement
is taken at hour 24. At each time point, we reapplied conductive
paste and reattached BandEI to simulate typical reuse scenarios.
As shown in Figure 7b, all six electrical impedance curves exhibit
highly similar shapes, indicating the consistency of impedance over
time. The average coefficient of variation (CV) of bio-impedance
across time is 9.27% for these six sets of data, which is acceptable

2].

4.2 Prototypes

We demonstrate prototypes of BandEI at the ankle, neck, and knee.
All designs are achieved by our EI-Editor (Figure 8a). This user-
friendly interface guides the user through each step of creating
BandEl, from specifying electrode placements to finalizing the wear-
able’s shape. By following on screen prompts, users can easily tailor
and customize electrodes for any part of the body. The correspond-
ing prototypes can be fabricated via laser cutting based on the
exported design files. The customized BandEI prototypes demon-
strate the adaptability and versatility of the system. Notably, for a
typical BandEl it only takes 10 minutes for the entire design and
fabrication process. This significantly streamlines the creation of
customized wearables interfaces.

4.3 Validation with EMG

SEMG is a well-established technique for assessing muscle activity
and is regarded as the gold standard [12, 24, 30]. In this study, we
use SEMG data as a reference benchmark to evaluate the electrical
impedance sensing for muscle activity monitoring. By correlating
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exerted force respectively.

electrical impedance signals with their corresponding SEMG record-
ing across a range of dynamic and static tasks, our results consis-
tently demonstrate strong alignment between these two modalities,
thereby confirming the efficacy of electrical impedance for measur-
ing muscle activity.

Figure 9a illustrates the electrode orientation and highlights
four electrical impedance sensing channels, each obtained by alter-
ing the injection and receiving electrode pairs. In our validation,
we employed commercial electrodes for both sSEMG and electrical
impedance sensing to ensure consistency and minimize variability
stemming from electrode differences.

To evaluate the ability of electrical impedance sensing to capture
both active and passive muscle states across different engagements,
we design exercises that span dynamic and static conditions, with
and without weights. For clarity in our experiments, dynamic tasks
are defined as those involving a change in joint angle or muscle
length (e.g., arm bending, transition between poses) whereas static
tasks entail isometric contractions with no joint movement (e.g.,
isolated muscle pulses). This categorization provides a clear frame-
work for examining electrical impedance sensing’s performance
under various contraction intensities and movement patterns.

As shown in Figure 10b, we measured synchronized sEMG and
electrical impedance sensing data during incrementally weighted
bending exercises (0 kg, 1.5 kg, 2.5 kg, 4 kg, and 5 kg). While elec-
trical impedance sensing detects muscle activity for all weight
conditions, sSEMG failed to capture signals during unweighted con-
tractions, as indicated by the bracket. This discrepancy can be
attributed to SEMG’s susceptibility to noise and its lower sensitivity
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Figure 10: Validation with Pulsing Tasks and Passive Muscle
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electrode orientation. (b) Dynamic Bending for Isometric and
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when muscle activation is subtle. By contrast, electrical impedance
sensing obtains higher sensitivity to changes in tissue, allowing it to
register muscle activity across a broader range of forces, including
very low-intensity contractions that are not detectable via SEMG.

We then measured for a series of static pulses at different force
intensities, which further highlighted the electrical impedance sens-
ing’s sensitivity. Lighter pulses produce only low sEMG signals that
are buried in noise, whereas electrical impedance sensing continues
to provide clear indications of muscle engagement. In a subse-
quent set of dynamic exercises shown in Figure 10 (bend up, bend
down, open, close), we compare electrical impedance sensing and
SsEMG signals with electrode placement repositioned to capture
forearm muscle activity. Here, the electrical impedance sensing
signal closely mirrors the pulse-to-pulse SEMG signal, emphasizing
the versatility for tasks of varying muscle contraction levels.

Lastly, to validate electrical impedance sensing’s potential for
both active and passive muscle monitoring, we tested both isotonic
and isometric contraction by placing electrodes over the biceps and
triceps. During arm bending, the biceps actively contract, while
the triceps experience passive lengthening (and vice versa during
extension). In these scenarios, SEMG demonstrates limitations in
detecting low-level signals while electrical impedance sensing con-
sistently captures the subtle impedance changes that accompany
both active and passive forces.

From these findings, it is evident that while SEMG remains the
current gold standard for muscle activity monitoring, electrical
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Figure 11: Validation with Wrist-worn Electrical Impedance
Sensors. (a) BandEI placement on the hand, covering the
wrist, thenar and hypothenar eminences, and individual
fingers to enable localized muscle activity sensing. (b)
Impedance signals from 32 BandEI channels during four
gestures, showing region-specific responses corresponding
to different muscle groups.

impedance sensing offers a powerful complementary modality. It
not only supports SEMG data under conventional conditions but
also expands detection capabilities to encompass more intricate,
deep, or lower-force muscle activities that SEMG is often not able
to capture. This enhanced sensitivity makes electrical impedance
sensing a promising tool for applications where detailed muscle
function monitoring is essential, and it has the potential to augment
SsEMG by capturing subtle or complex muscle movement beyond
existing methods.

4.4 Validation with Wrist-worn Electrical
Impedance Sensors

We further evaluate whether BandEI detects localized and subtle
muscle or tendon activity that conventional wrist-worn electrical
impedance sensing [21] often misses. While wrist-based impedance
has demonstrated promising accuracy for gesture recognition, its
sensing range is limited and may not capture fine-scale or region-
specific actions, particularly those necessary for micro-gestures.
To explore this limitation, we replicate existing wrist-based setups
by collecting electrical impedance signals from both the wrist and
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multiple regions of the hand, and then compare the respective
responses across different anatomical sites.

We divide the hand into seven anatomically distinct regions:
index finger, middle finger, ring finger, little finger, thenar emi-
nence, hypothenar eminence, and wrist (Figure 11a). Each region
is equipped with four electrodes, except for the wrist, which has
eight, resulting in a total of 32 channels for interaction. To min-
imize crosstalk, our circuit activates only one electrode pair for
current injection and another for voltage measurement per frame,
with all other channels deactivated. This pair-by-pair activation
ensures temporal isolation and minimizes crosstalk, with stable
impedance acquisition at 30 frames per second with 32 channels.
To evaluate this system, we select four diverse gestures to evaluate
muscle engagement patterns: (1) Hand-waving; (2) Wrist Rotation;
(3) Thumb-to-Pinky Touching; and (4) Finger Tapping. We choose
these gestures not only for their biomechanical diversity but also
because they represent well-established and distinguishable muscle
activation patterns [22] [5].

Each gesture produces an electrical impedance signal that aligns
with known anatomical function, as shown in Figure 11b: Hand
waving shows negligible reactions in all regions, reflecting the
limited involvement of hand and wrist muscles. Wrist rotation
causes strong signal fluctuation only in the wrist area, whereas the
hand channels remain nearly unchanged. Thumb-to-pinky touching
generates clear responses in the thenar region that controls thumb
movement. Finally, finger tapping (middle finger) appears most
prominently on the middle finger channel, with minimal signals
elsewhere.

These results indicate that BandEI is capable of capturing subtle,
region-specific muscle activity that wrist-only setups may not be
able to detect. Placing electrodes directly on the hand is crucial for
observing such fine-grained signals; such capability broadens the
scope of electrical impedance sensing and enables more detailed
sensing of localized hand gestures in the future.

5 APPLICATION

We demonstrate BandEI in three applications, gesture recognition,
head pose estimation, and gait monitoring, highlighting its ability
to sense deep muscle activity across anatomically and functionally
diverse regions.

5.1 Gestures and Micro-gestures Recognition

We demonstrate BandEI’s ability to capture local deep muscle ac-
tivity in the hand for gestures and micro-gestures recognition. The
placement of the electrodes is consistent with the description in
Section 4.4 and Figure 11a, in the hand area.

We collected data across a total of thirteen gestures [33], includ-
ing: (1) four thumb-to-finger contact gestures (index through little),
(2) four isolated micro finger lifts (excluding the thumb), and (3)
five expressive gestures such as number six, thumbs up, claw, spi-
derman, and gun. Each gesture was recorded with 800 data samples
and split into training, validation, and testing sets at a 60/20/20
ratio.

We trained a four-layer multi-layer perceptron (MLP) with ReLU
activation functions to recognize these gestures, with an input
of a 32, 24, 8, and 6-dimensional feature vector derived from the
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impedance readings of the 32 electrodes on the hand (Figure 11a).
These input configurations correspond to all channels (32), finger-
only (24), wrist-only (8), and a minimal finger setup (6), allowing us
to evaluate the relative contribution of each region to classification
performance.

As shown in the confusion matrix (Figure 12b), the finger-only
model achieved 98% recognition accuracy across all thirteen types
of gestures, indicating that BandEI can accurately capture small
muscle activities under local hand attachment conditions and effec-
tively distinguish different gesture actions.

To fairly compare signal richness across locations, we also varied
the temporal context by testing multiple sliding window sizes (1,
5, and 10), holding the model architecture constant. In all settings,
finger-based models consistently outperformed wrist-only mod-
els, which plateaued at 89% accuracy. Even with only six finger
channels, the minimal configuration outperformed the complete
wrist-based model, highlighting the superior spatial resolution and
signal quality of the finger for fine motor intent.

5.2 Head Pose Estimation

In addition to the predominant study of the hand and wrist, we
extend the capability of our BandEI platform to other anatomically
and functionally significant regions of the body. We develop a cus-
tom six-channel electrode array, allowing for volumetric sensitivity,

potentially capturing subtle changes in muscle activation that are
difficult to monitor using conventional techniques.

Traditional head-tracking methods, such as camera-based mo-
tion capture often require external setup. In contrast, our Electrical
Impedance Sensing-based approach provides a wearable interface
that is portable and operates in the wild. This enables real-time mea-
surement of impedance variation to capture subtle muscle changes
in the neck and makes it particularly suitable for scenarios where
continuous monitoring is crucial.

To obtain ground-truth pose data alongside electrical impedance
sensing signals, the participant wears both the six-channel neck
electrode array and a custom head-mounted gyroscope (Figure 13a).
Each data collection session lasted 60 seconds, during which the
participant performed isolated roll, pitch, or yaw movements, as
well as randomized sequences combining all three. Throughout
all sessions, a total of 2,157 samples were collected, representing
a broad spectrum of neck positions in three degrees of freedom
(3DoF) and providing a comprehensive data set for subsequent
model development and performance evaluation.

A seven layer multilayer perceptron (MLP) regression model was
used to map the six electrical impedance sensing channels to three
continuous orientation variables: roll, pitch, and yaw in Figure 13b.
To facilitate the assessment, the dataset is split into 80%, 10%, 10%
for training, validation, and testing respectively.
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Figure 14: Electrical Impedance Signals Comparison with Different Gym Machines and Metrics. (a) Treadmill in flat condition
with increasing BPM. (b) Treadmill in inclined condition with increasing BPM. (c) StairMaster with increasing intensity. (d)

Elliptical with increasing speed.

We use Mean Square Error to quantify the model’s accuracy
shown in Figure 13c and Pearson correlation coefficient to quantify
the strength of the linear relationship between the predicted values
and the true values. Pitch exhibits the highest Pearson correlation
coefficient at r = 0.90, potentially due to the relatively isolated na-
ture of the nodding motion. Roll follows closely with r = 0.87, likely
for the same hypothesis. Yaw, which involves a broader rotation
across multiple muscle groups, shows an r = 0.83, suggesting that
more complex movement may yield slightly lower correlations.
Nevertheless, these results collectively indicate strong predictive
capability for all three axes.

These results demonstrate the feasibility of BandEI to monitor
neck movements across multiple degrees of freedom, offering a vol-
umetric, high-sensitivity approach that capitalizes on the system’s
multi-channel designs and flexible electrode configuration.

5.3 Gait Monitoring

Monitoring muscle activity at the ankle presents unique challenges
due to the joint’s complex geometry and high degrees of freedom.
To explore how BandEI can address these challenges, we design and
fabricate an eight-electrode array that conforms to the curvature
of the ankle, enabling a richer, multi-channel perspective of deep
muscular and soft tissue changes.

We observe the performance of this ankle-mounted BandEI sys-
tem during controlled exercise trials on three commonly used gym
machines: a treadmill, a stair-climbing machine (StairMaster), and
an elliptical trainer. On the treadmill, the participant walked and
ran under both flat(level) and inclined conditions to target distinct
muscle activation patterns. Each exercise session was structured to
increase the level of exertion in discrete steps, through variations
in speed, beats per minute(BPM), or resistance intensity. For clarity
in comparison, we highlight the first and last phases of each trial,
representing lower and higher exertion levels, respectively.

Figure 14 displays electrical impedance signals recorded from all
eight channels for each exercise modality. The shaded region in the
plot indicates a transition from the baseline to elevated intensity.
Notably, multiple channels exhibit pronounced shifts in impedance
amplitude and waveform patterns following these transitions, re-
flecting the heightened muscle engagement that occurs at higher
workload levels(some example channels are marked with rectan-
gles). These observations suggest that BandEI can capture dynamic
fluctuation in muscular activity, reflecting changes in both exercise
intensity and movement frequency at the ankle.

6 LIMITATION AND FUTURE WORK

BandEI demonstrates strong potential as a low-cost, rapidly cus-
tomizable platform for electrical impedance sensing. Its ability to
conform to various body regions, support high-density layouts,
and maintain consistent signal quality across multiple sessions
highlights its suitability for both prototyping and real-world phys-
iological monitoring. The combination of digital fabrication and
widely available materials enables quick iteration and affordable
production, making it accessible to a wide range of users and use
cases. Despite these advantages, several limitations remain that
open important avenues for future exploration. In this section, we
discuss key challenges related to signal interpretability, mechan-
ical reliability, and customization interface flexibility, along with
strategies for addressing them in future work.

Signal Interpretability. A fundamental limitation of electrical
impedance sensing lies in the interpretability of its signals. Impedance
varies with tissue composition, electrode placement, and anatomy,
making it challenging to infer physiological states directly. To im-
prove robustness and insight, future work will explore combining
impedance sensing with surface electromyography (SEMG), leverag-
ing Electrical Impedance Tomography(EIT)’s spatial resolution and
EMG’s temporal precision for a more interpretable hybrid system.
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Mechanical Reliability and Skin Contact. Although BandEI is de-
signed for low-cost, single-use scenarios, our experiments demon-
strated that it remains reliable over multiple uses. We reused the
same patch in over five data acquisition sessions (2 hours each)
across two months. These results suggest that the materials and
fabrication process offer sufficient durability for repeated research
use. However, mechanical reliability during long-term or active
wear remains a challenge. Specifically, BandEI is susceptible to elec-
trode “floating” or partial detachment under heavy sweating or
when applied to highly contoured surfaces. These conditions can
disrupt skin contact and introduce signal instability. To mitigate
this, we customize the bandage contour to match the geometry of
the body region, minimizing edge lift and improving conformal fit.
However, this solution is not always sufficient. Future iterations
may incorporate breathable adhesives, sweat-resistant materials,
or integrated mechanical supports to improve skin contact across
diverse conditions. Improving this mechanical reliability will be
especially important for longer-term deployment or high-motion
tasks.

Fabrication and Customization. BandEI includes a digital design
interface that supports rapid, user-driven customization of patch
layouts. Users can configure key parameters such as the bandage
contour, number of electrodes, electrode size, and inter-electrode
spacing. Combined with a digital fabrication process and low-cost,
widely available materials, this enables fast iteration and afford-
able production; each patch costs approximately $1 in materials.
However, we acknowledge that access to fabrication tools such
as laser cutters may not be universal. Our cost estimation reflects
material expenses only. In the current implementation, electrodes
are dynamically and evenly distributed along the user-defined ban-
dage contour to ensure balanced coverage and signal uniformity for
general-purpose EIT sensing. While effective for most scenarios,
this layout approach is based on geometric rules and does not ac-
count for anatomy-specific sensing goals or non-uniform sensitivity
requirements. To address this, future versions of the interface will
incorporate algorithmic layout strategies informed by anatomical
landmarks or simulation feedback (e.g., EIT). Such improvements
could enable more precise and personalized electrode configura-
tions, particularly for high-resolution or task-specific applications.

7 CONCLUSION

We present BandEI, a flexible electrical impedance sensing sys-
tem tailored for monitoring deep muscles and tendons in small or
anatomical complex regions. By integrating digital fabrication, a
customizable design tool, and low-cost materials, BandEI addresses
multiple limitations of traditional muscle activity sensors, particu-
larly in terms of electrode placement precision, signal stability, and
user comfort. Our evaluations demonstrate BandEI’s capability to
detect subtle, low-force muscle activity, especially in challenging
areas such as the finger and neck, thereby enabling applications
that include fine-grained gesture recognition, posture tracking, and
gait monitoring.

A primary contribution of our work lies in the low-cost, re-
producible fabrication pipeline and the interactive design toolkit,
which empower users to rapidly prototype and adapt electrode
layouts for specific anatomical targets. This modular approach
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facilitate broader adoption in HCI, rehabilitation, and healthcare
where custom-fit wearables are crucial for ensuring measurement
accuracy and user comfort.
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